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On the Calculation of the Acyclic Polynomial 
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Graphical methods are developed for recursive evaluation of the acyclic 
polynomial. Analytical formulas of the acyclic polynomials for several specific 
series of graphs are given. Mathematical properties of the derivatives of the 
acyclic polynomial are given. 
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1. Introduction 

The non-adjacent numbers p(G, k) are defined [1] as the number of ways in which 
k mutually non-incident edges can be selected in a graph G. Further, the Z-counting 
polynomial Qo(X) and the topological index Z G are introduced as [1] 

p(G, k)X k (1) 
k=0 

QG(X) = 

and 

ZG=Q~(1)= L p(G, k). (2) 
k=0 

Although these quantities were initially supposed to be suitable only for modelling 
the thermodynamic properties of saturated hydrocarbons [1, 2], applications 
were later found in such diverse fields as chemical documentation [3], dimer 
statistics [4], and number theory [5]. If G is the molecular graph of a x-electron 
network, then 

p(G, m) = number of Kekul6 structures 

p(G, m - 1 ) -  m .p(G, m)= number of Dewar structures. 
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These simple identities indicate the relevance of the non-adjacent numbers in the 
theory of conjugated compounds. Really, the non-adjacent numbers are closely 
related to the coefficients of the characteristic polynomial of G [6] and therefore 
play an important role in the Hiickel molecular orbital theory I-6, 7]. In particular, 
the topological index was shown to be related to various HMO reactivity indices, 
e.g., total n-electron energy [8], bond order [9] and n-electron charge density 1-10]. 

A qualitatively new application of the non-adjacent numbers was recently de- 
veloped in two independent papers [11, 12]. A quantity P"~ X), the acyclic 
polynomial has been introduced as 

P"r X ) =  ~ ( -  1)kp(G, k)X "-2k (3) 
k = 0  

where n is the number of vertices of the graph G. This topological function enables 
a new approach to the concept of Dewar resonance energy [11, 12]. 

There is an evident relation between Qa(X) and Pat(G, X), namely, 

p,c (G, X) = X"QG ( - X - z). (4) 

Therefore, both the polynomials Qa and P ac contain the same topological informa- 
tion and fulfill closely analogous recurrence relations. Nevertheless, there are two 
distinguished properties of the acyclic polynomials which are worth mentioning. 

- If, and only if the graph is acyclic, its acyclic polynomial coincides with the 
characteristic polynomial x. 

- All roots of all acyclic polynomials are real 2. 

A graphic recursion method was proposed for the calculation of the Z-counting 
polynomial [ 1, 6]. Because of Eq. (4), this method is equally well applicable in the 
case of the acyclic polynomial [11, 14, 16]. In the present work we shall develop a 
few new graphic techniques for evaluation of P"L Furthermore, we hope that the 
obtained results enable a deeper insight into, and a better understanding of the 
topological and algebraic properties of the acyclic polynomial. Additional 
mathematical properties of P"~ are discussed elsewhere [14]. 

2. Recurrence Formulas for the Acyclic Polynomial 

The basic recurrence relation for the graphic evaluation of pa~ is 

pa~(G)= p a ~ ( a - e ) -  pa~(G@e) (R1) 

where G - e  is obtained by deletion of the edge e from G and GO e is obtained by 
deletion of the edge e and the both vertices incident to it. Hence, G - e  and GG e 

1 For further details see [13] and [14] and references cited therein. 
2 This property of the acyclic polynomial has not yet been proved and should be a challenge for the 
mathematicians. Its validity is now checked by computers on several thousands of graphs [15]. 
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possess n and n - 2  vertices, respectively. Various proofs of (R1) are given in 
Refs. [1, 14, 16]. 

Although (R1) provides a universal algorithm for the evaluation of pac, its 
application is not simple in the general case. We derive now a few specializations 
of (R1) which may be useful if the considered graph possesses a particular structural 
detail. At the same time these results exhibit interesting topological properties 
of P~ 

Let us first consider graph G containing two adjacent vertices of degree two. Then 

and finally, 

In the above formulae H denotes an arbitrary subgraph of G. The identity (R2) 
presents in fact a "ring contraction" procedure, For example, 

Assume now that v is a vertex of degree d. Let v be incident to the edges 
e l ,  e z ,  . . . ,  e a. Then 

P aC(G) = P " C ( G  - e a ) - P ~C(G ~ e a ) 

= P a~(G - e l  - e2 )  - P ~C(G G e l )  - P ac(G O e2) 

d 
= P " C ( G - e l - e 2  . . . . .  e a ) -  ~ P ~ ( G G e j ) .  

j = l  

Since it is evident 

P " ~ ( G  - e 1 - e z . . . . .  ea) = X P " ~ ( G -  v), 

it follows, 
d 

P " C ( G ) = X P " ~ ( G - v )  - ~ .  P " ~ ( G O e j ) .  (R3) 
j = l  
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Let us now divide the edges incident to the vertex v into two arbitrary parts 
f l , f 2  . . . . .  f~ and g l ,  g2 . . . . .  gb with a+b=d.  Then, 

eac(a)=eac(a-fl-f2 . . . . .  L) -  ~, eac (a @fj) (5) 
j=l  

b 
Pa~(G)=P"~(G-gl-g2 . . . . .  gD-  Z e"c(G| (6) j=l 

The sum of Eqs. (5) and (6) is 

2P"r ( a )  = P~r - f  l - f 2  . . . . .  fa) -}-pac( G --gl  - g 2  . . . . .  gb) 
d 

- ~ P"~ (7) 
j=l 

Subtracting (R3) from (7) one obtains 

PaC(G)=P"C(G-f~ . . . . .  s . . . . .  gb)--XP"~ (R4) 

In particular, for a = 1 we have 

P"~(G)= P " ~ ( G - e ~ ) -  J ( P ~ ( G - v )  + Pa~(G-e2 . . . . .  e,). 

An important  algebraic consequence of (R4) will be discussed in the last section. 

By an analogous, but more tedious way of reasoning, the following relation can 
be obtained for graphs possessing a 4-membered cycle. 

For  example, 

rac( ~ )~_rac( ~ )_}_pat( I l )__rac( : : ) 

= (X 2 - 1) 2 + (X 2 -- 1) 2 -- )i z4 

= X 4 - 4 X 2  + 2. 

3. Analytical Formulas of the Acyclic Polynomials for Several Specific Examples 

Several specific examples will be given here. The pac of a pass progression P,  
corresponding to the carbon a tom skeleton of the polyene with n carbon atoms is 
identical to its characteristic polynomial  as 

eao(e.)= ~ (_  1)k n x._2k (8) 
k=0 

The coefficients of  the pac of a cycle C, with n points has been derived in Ref. [1] as 

In/a1 n (v t~k~  ~(n_2k" (9) 
eac(c.)= ~ ( -  1) ~ ~_~ 

k=0 
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The graph  cor responding  to an a l ternant  hyd roca rbon  is a subgraph  of  a bi- 
comple te  g raph  or a comple te  bipart i te  g raph  K.1 ,.2 composed  of  n 1 s tarred and  
n z uns tar red  a toms  together  with all the possible combina t ion  bonds  of  s tarred 
and uns tar red  a t o m  pairs.  The  pac of  g raph  K.  . . . .  can be derived as follows. Let  
v I and v z be a toms  respectively chosen f rom the starred and uns tar red  groups  in 
K. I , .  2. Let  also ej be an arb i t ra ry  bond  connect ing bo th  the groups  o f  a toms.  
Immedia te ly  one gets 

K. l , . 2 -vx=K.~- l , . 2 ,  K"I , .2 -v2=K.  .... - 1 ,  and 

K.~, .2Gej=K.,-1, .2-1.  

Then  f rom (R3) the fol lowing recurrence fo rmula  is obtained,  

PaC(K.,,.2) =xpac(K"I-  1 . .2 ) -n2PaC(Knl -  1, n2-1 ) 

=XP"C(K.~,.2_a)-nlP~C(K.~_I,.2_I). 

Successive appl ica t ion  of  these relat ions yields 

P"C(K.1, .2 ) = ( X2 - nl - n2 + 1)P"~(K.~- 1, .2- i) 

- (n I - 11 (n 2 - 1)P aC(Knl _ 2 ,  n 2 - -  2)" 

Fur ther ,  the fol lowing expression can be proved by induct ion:  

mln(nl, n2) 
P"ffK "b- 1) k nl !n2! X n~+"2- zk 

" nl . . . .  -- k=02 ( - -  (H l _ k ) , ( H 2 _ k ) ! k  ! 

= ~ ( _  1)kk! X.~ +.2 - 2k. 
k=0 \ k / \ k /  

The meaning  of  this relat ion is clear. Fo r  the comple te  graph/ ,2,  we have 

K . - v = K . _  1 and K.Ge~=K._  2. 

F r o m  (R3) one gets 

Pac (Kn) = xpac(K. - 1) - (n -- 1)pac (Kn_ 2)" 

Successive appl ica t ion  of  this relat ion followed by the mathemat ica l  induct ion 
gives 

[n/21 H ! 
p a c ( K . ) =  ~ (-- 1) k ( n _ Z k ) ! k ! 2  k x n - 2 k  

k=0 

-- ( - 1 )  k ( 2 k -  1)v 
k= o 2k ' 

where (2k - 1) ! ! = (2k - 1) (2k - 3) (2k - 5)- - �9 3.1.  Several acyclic po lynomia l s  
obta ined  by using these expressions are given in the Appendix .  
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4. The Derivatives of the Aeyelie Polynomial 

It is important to note that contrary to (R1)-(R3) the relation (R4) represents 
pac as a combination of polynomials of degree n only. In other words, Pat(G) can 
be written as a linear combination of acyclic polynomials of certain spanning 
subgraphs of G 3. A repeated application of (R4) leads finally to 

Pa~(G, X) = ~, ajpac(Tj, X), 
J 

where Tj is an acyclic spanning subgraph of G, while aj is an integer. Since the 
acyclic polynomial of an acyclic graph T is equal to its characteristic polynomial 
P(T,Z)  [13, 147 2, itis 

Pa~(G, X)= ~ aje(T~, x )  
J 

and 

_ _  d P(Tj X). (10) d eac(G, X) = 2 a~-~  , 
dX j 

On the other hand, for any graph G, we have [17] 

d 
P(G, X)= ~ P ( G - v , X ) .  (11) 

dX v=l 

Substitution of (11) back into (10) yields 

A 
Pa=(G, X)-- ~, Pa~(G-v, X). (12) 

dX v= a 

Hence, the identity (11) is valid not only for the characteristic, but also for acyclic 
polynomials. An analogous reasoning shows that Eq. (12) can be generalized for 
the higher derivatives of Par as follows. 

dS ar X 1 d~sP (G,)= ~[ 2 pae(G-u1 . . . . .  Vs)" (13) 
(vl,..., vs) 

The summation in Eq. (13) runs over all (7) selections of s distinct vertices in 
graph G. 

Acknowledgement. One of the authors (I.G.) would like to thank the Mathematical Institute in Beograd 
for financial support of this research. 

3 A spanning subgraph of G contains all the vertices, but not all the edges of G. 
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Appendix 
Tables of the acyclic polynomials of the fundamental graphs belonging to 
C., K., and K ..... 
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n C,, P~c(C.)  Zo" 

2 @ X z - 2  3 

3 ~ b  X 3 - 3X 4 

4 ~ X '~ - 4X 2 + 2 7 

5 q ~  X s - 5 X 3 + 5 X  11 

6 ~ X 6 - 6 X 4 + 9 X  2 - 2  18 

n K. P"~ z~ 

1 o X 1 

2 ~ X 2 -  1 2 

3 C ~  X3--3X 4 

4 ~ X 4 - 6 X 2 + 3  10 

5 ~ X s - 10X 3 + 15X 26 

n 1 n z K b p,c(K ~ ZG n t , n 2  \ h i , n 2 1  

1 1 ~ X 2 - 1  2 

2 t ~ ' P  X 3 - 2 X  3 

3 1 ~ X 4 - 3 X  2 4 

4 1 c ~  X 5 4 X 3  5 

n 1 c ~  X"+I-nX"-I  n + l  

"Topological index, namely, the sum of the absolute values of the coefficients 
of P ac. 

b o and �9 indicate, respectively, the starred and unstarred atoms. 
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171 n 2 K b ae ..... P (K,,,,.~) Z~ 

2 2 ~ X 4 - 4 X 2 + 2  7 

3 2 c ~  Xs_6X3+6X 13 

4 2 c ~  X 6 - 8 X 4 +  12X 2 21 

n 2 c ~  X.+Z_2nX.+n(n_l)X .-2 n 2 + n + l  

X6-9X4+ 18X2-6  34 

X"+3-3nX"+l+3n(n-1)X n-1 n 3 + 2 n +  1 
-n(n - 1)(n - 2)X "-3 

bo and * indicate, respectively, the Starred and unstarred atoms. 
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